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Abstract: This work reports the evaluation of several theoretical approaches to the zero-field splitting (ZFS)
in transition metal complexes. The experimentally well-known complex [Mn(acac)3] is taken as an example.
The direct spin-spin contributions to the ZFS have been calculated on the basis of density functional
theory (DFT) or complete active space self-consistent field (CASSCF) wave functions and have been found
to be much more important than previously assumed. The contributions of the direct term may exceed ∼1
cm-1 in magnitude and therefore cannot be neglected in any treatment that aims at a realistic quantitative
modeling of the ZFS. In the DFT framework, two different variants to treat the spin-orbit coupling (SOC)
term have been evaluated. The first approach is based on previous work by Pederson, Khanna, and Kortus,
and the second is based on a “quasi-restricted” DFT treatment which is rooted in our previous work on
ZFS. Both approaches provide very similar results and underestimate the SOC contribution to the ZFS by
a factor of 2 or more. The SOC is represented by an accurate multicenter spin-orbit mean-field (SOMF)
approximation which is compared to the popular effective DFT potential-derived SOC operator. In addition
to the DFT results, direct “infinite order” ab initio calculations of the SOC contribution to the ZFS based on
CASSCF wave functions, the spectroscopy-oriented configuration interaction (SORCI), and the difference-
dedicated CI (DDCI) approach are reported. In general, the multireference ab initio results provide a more
realistic description of the ZFS in [Mn(acac)3]. The conclusions likely carry over to many other systems.
This is attributed to the explicit treatment of the multiplet effects which are of dominant importance, since
the calculations demonstrate that, even in the high-spin d4 system Mn(III), the spin-flip excitations make
the largest contribution to the SOC. It is demonstrated that the ab initio methods can be used even for
somewhat larger molecules (the present calculations were done with more than 500 basis functions) in a
reasonable time frame. Much more economical but still fairly reasonable results have been achieved with
the INDO/S treatment based on CASSCF and SOC-CI wave functions.

1. Introduction

The zero-field splitting (ZFS) is typically the leading term
in the spin Hamiltonian (SH) for transition metal complexes
with a total ground-state spinS > 1/2.1-5 Its net effect is to
introduce a splitting of the 2S+ 1 MS levels (which are exactly
degenerate at the level of the Born-Oppenheimer Hamiltonian),
even in the absence of an external magnetic field.4-6 Thus, an
analysis and interpretation of the ZFS is imperative if the
information content of the various physical methods which are
sensitive to ZFS effects, such as electron paramagnetic resonance
(EPR1,7,8), magnetic susceptibility measurements,9 magnetic
torque magnetometry,10 magnetic circular dichroism (MCD11),

and magnetic Mo¨ssbauer (MB) spectroscopy,12 is to be devel-
oped. Renewed interest in ZFSs has recently arisen in the field
of molecular magnetism. The ultimate goal there is to design
single-molecule magnets for which is it known that a large
negative, axial ZFS together with a high total ground-state spin
are essential to achieve the desired magnetic characteristics.13-15

Furthermore, ZFSs arise in magnetic interactions between
remote paramagnetic centers.16 In the EPR community, this is
being used to increasing sophistication for the determination
of distances.17-20 (For recent developments and applications,
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Metal Chemistry; Springer: Heidelberg/New York, 1978.
(13) Gatteschi, D.; Sessoli, R.Angew. Chem., Int. Ed.2003, 42, 268.
(14) Gatteschi, D.; Sorace, L.J. Solid State Chem.2001, 159, 253.
(15) Gatteschi, D.; Caneschi, A.; Pardi, L.; Sessoli, R.Science1994, 265, 1054.

Published on Web 07/08/2006

10.1021/ja061798a CCC: $33.50 © 2006 American Chemical Society J. AM. CHEM. SOC. 2006 , 128, 10213-10222 9 10213



see refs 21-26.) However, the analysis is always based on point
dipole models which are certainly reasonable for large distances
and well-localized spin densities but may become problematic
otherwise. Consequently, the prediction of ZFSs from first
physical principles is an important field of investigation.
However, there has been surprisingly little activity in this field,
and only in recent years have the modern electronic structure
methods been adopted for the calculation of ZFSs.

It is well known that, to second order in perturbation theory,
the ZFS has two contributions:4,27 (a) a first-order term which
involves the direct dipolar spin-spin interaction between pairs
of electrons28 and (b) a second-order term, arising from the
spin-orbit coupling (SOC), that introduces some angular
momentum into the ground state (assumed orbitally nondegen-
erate) and which is being picked up by the spin of a second
electron.6,27,29

It is probably fair to state that transition metal chemistry is
strongly dominated by the assumption that the second-order
SOC contribution is the dominant source of the ZFS for all open-
shell transition metal complexes. Hence, only a few semiem-
pirical estimates of the spin-spin contributions have been made,
all of which conclude that they are probably negligible7,29 or at
least small.30 In 1964, Griffith wrote carefully in his ground-
breaking book (ref 29, page 330): “The value ofF in transition
metal ions is uncertain, but at least it is probably not greater
than 0.1 cm-1 in the ground terms of divalent or trivalent ions
of the first transition series” (F is proportional to the spin-spin
coupling energies). It appears that this estimate has ever since
been taken for granted and was used as the main reason for
neglecting the direct spin-spin coupling in the treatment of
ZFSs of transition metal complexes. One important conclusion
of the present work is that this assumption needs to be carefully
reconsidered and that the first-order contributions may, in many
cases, be much larger than previously assumed.

The SOC contribution to the ZFS is automatically obtained
if all MS multiplets are calculated in the presence of SOC.
However, in a perturbative framework, the treatment of the SOC
term is surprisingly difficult because the SOC mixes states of
different multiplicity. This has been clearly recognized since
the early days of ligand-field theory.29 However, apparently,
the first general second-order formulation of the ZFS tensor in
standardSDS form has been derived in our previous work.6 It
has also been pointed out4-6 that the ZFS and theg-tensor cannot

be related to a common tensorΛ as is commonplace in many
texts on ligand-field theory.3,31,32Finally, several sophisticated
studies of SOC contributions to the ZFS by McGarvey and co-
workers2,33 and Solomon and co-workers34,35 are noted which
have given important insights into the geometric and electronic
origins of the ZFS in transition metal complexes.

In the ab initio framework, calculations of ZFSs have a
relatively long history. It is not attempted here to review the
considerable body of work that has been done (e.g., see refs
36-53). Owing to the possibility of an explicit representation
of eachMS member of a given spatial multiplet with total spin
S, configuration interaction (CI) methods have been used rather
extensively to calculate zero-field splittings for atoms and small
molecules with high sophistication. For larger molecules,
rigorous multireference CI (MRCI) methods54 are more difficult
to apply, and consequently, related studies are rather scarce.
Vahtras and co-workers have provided a concise description of
a multiconfigurational self-consistent field (MCSCF) method
for the prediction of ZFSs and have applied it with success to
several small to medium sized organic molecules.45,50,55-57

Applications to transition metal complexes have apparently not
been reported. Rather successful studies along these lines on
transition metal complexes have also been reported by Ribbing
and co-workers.47,48,58In these works, MRCI as well as complete
active space SCF (CASSCF) calculations together with second-
order many-body perturbation theory (CASPT2) has been used
to arrive at good predictions of the SOC contribution to the
ZFS. DFT approaches to ZFS are even more scarce. As far as
multiplet splittings in atoms are concerned, some studies using
relativistic two-component DFT approaches which include the
SOC have been reported.59 A DFT-based perturbation theory
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of the SOC contribution to the ZFS has been suggested by
Pederson and Khanna60 and has been applied with surprisingly
high success by Kortus, Pederson, and co-workers (e.g., ref 61).
While the results obtained for very large and extensively spin-
coupled systems have been impressive, a validation study on
mononuclear transition metal complexes is required and pres-
ently underway in an collaborative effort between the groups
of Kortus, Ruiz, and the present author. The spin-spin coupling
contribution to the ZFS was apparently first suggested by
Petrenko et al.,62 who adopted the general theory of McWeeny
and Mizuno28 on various second-order density matrices to the
case of a single Kohn-Sham determinant and applied it to the
CH2 molecule.

The present work has the following purposes: (1) to provide
a description of a quasi-restricted DFT method for the calcula-
tion of the SOC contribution to the ZFS which has been
previously used with reasonable success; (2) to implement and
evaluate a general method for the calculation of the spin-spin
coupling contribution to the ZFS using an approach closely
related to that pursued by Petrenko et al.;28 (3) to compare the
DFT results with those obtained via ab initio methods which
include both static and dynamic correlation contributions and
to demonstrate that such methods are readily applicable to
medium-sized transition metal complexes; and (4) to expand
on earlier semiempirical work on the ZFS at the intermediate
neglect of the differential overlap/spectroscopic parametrization
(INDO/S) level,6 which is readily applied to very large
molecules.

As a test case, the well-known [Mn(acac)3] complex was
chosen since it is well studied and has been used and will likely
be widely used in the future for method comparisons.

2. Materials and Methods

All calculations were performed with a development version of the
ORCA program system63 to which the functionality described in this
paper was added. The structure of [Mn(acac)3] used in the calculations
is shown in Figure 1. All calculations were performed with the TZVP
basis set,64 which leads to a total of 558 basis functions. As described

below, CASSCF calculations with four electrons in the five Mn 3d-
based molecular orbitals (MOs) (CAS(4,5)), difference-dedicated
configuration interaction (DDCI2),65 and spectroscopy-oriented CI
(SORCI)66 on top of the CAS(4,5) reference states were carried out. In
the individually selecting calculations, the selection thresholdTsel was
10-6 Eh, and the prediagonalization thresholdTpre was 10-4. In the
SORCI calculations, the natural orbital truncation threshold was set to
10-4 (see ref 66 for a detailed description of these thresholds). In the
calculations, the orbitals were determined for the average of 5S ) 2
and 35S ) 1 roots, and the same number of roots was determined in
the DDCI2 and SORCI calculations (SA-CASSCF(4,5)). Semiempirical
INDO/S calculations were performed using the same SA-CASSCF-
(4,5) procedure.

In addition, DFT calculations of the ZFS were carried out using the
qausi-restricted theory outlined below as well as the method of Pederson
and Khanna,60 which was also implemented in the ORCA program.
Since the method is, at the present stage of development, only valid
for non-hybrid functionals, these calculations were carried out with
the BP86 functional.67,68As expected, other functionals which are based
on the generalized gradient approximation (GGA) yield very similar
results and are therefore not reported. The SOC operator used was the
recently described efficient implementation69 of the SOMF concept.38,70

The two-electron spin-spin coupling integrals were not approximated,
and new code for their generation was incorporated into the ORCA
program.

3. Results and Analysis

3.1. Theory. General Perturbation Theory of the ZFS.The
first complete-to-second-order analytic form of the SOC con-
tribution to the ZFS tensor for an orbitally nondegenerate
electronic ground state in the standardSDSform has been given
previously in terms of generalN-electron wave functions of
definite spin multiplicity. The following equations were derived
for the elements of theD-tensor:6

where∆b ) Eb - E0 is the energy difference between multiplet
“b” and the ground-state multiplet in the absence of SOC. To
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Figure 1. Structure of the [Mn(acac)3] molecule used in the present study.
Metal ligand bond distances are given in angstroms.
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arrive at the complete ZFS tensor, the direct electron-electron
spin-spin coupling which arises in first-order in perturbation
theory must be added:

In eqs 1-4, R is the fine-structure constant (∼1/137 in atomic
units),ge the free-electrong-value (ge ) 2.002319...), and|aSM〉
is a member of an, in general, infinite set ofN-electron states
with energiesEa. All quantum numbers that are necessary to
unambiguously identify the given state, except for the total spin
S and the projection quantum numberM, have been included
in the compound index “a” (a ) 0 for the electron ground-
state multiplet). The operatorssi,m are the components of the
spin-vector operator of theith electron with spherical compo-
nentsm) 0,(1, andr ij ) r i - r j is the distance vector between
electronsi and j, with rij being its magnitude. It is apparent
from eqs 1-4 that the calculation of ZFSs is very challenging,
since (a) the spin-spin and the spin-orbit operators are
complicated spin-dependent operators, (b) the SOC contribution
arises in second order in perturbation theory, thus requiring the
response of the ground state to the SOC perturbation to be
determined, and (c) the SOC requires the treatment of excited
states of different spin multiplicity than the ground state, which
is an added complication compared to the case of theg-tensor.6

Treatment of Spin-Orbit Coupling. For convenience, an
effective reduced one-electron SOC operator,hµ

SO(i), with three
spatial componentsµ ) x,y,z is assumed. Previously, the
parameterization by Koseki et al.41-43 was used in the ORCA
program, where

where lk
A(i) is the kth component of the orbital angular

momentum operator relative to centerA, andê(riA) is a suitable
radial operator, i.e.,

where ZA
eff is a semiempirical nuclear charge for atomA at

position RA. However, while this operator gives reasonable
results for 2p- and 3d-elements, in the present work the operator
ĥk

SO is treated by an accurate mean-field (SOMF) approxima-
tion to the full Breit-Pauli SOC operator. The SOMF approach
has been developed by Hess et al.38 It is widely used within
Schimmelpfennig’s AMFI program in a number of quantum
chemistry codes.71 However, it introduces two further ap-
proximations: (a) the neglect of multicenter SOC terms and
(b) the use of atomic self-consistent field orbitals and their
averaged occupation numbers in place of the molecular charge

densities. Both approximations were introduced in the interest
of computational efficiency, and their justification is through
the successful molecular test calculations.45,72-82

An efficient implementation of the SOMF concept was
discussed, which is based on the following formulation of the
effective one-electron operator:69,70

with the one- and two-electron SOC operators,

Here, P is the total charge density matrix,ZA is the nuclear
charge of atomA, riA is the position of electroni relative to
nucleus A, and l̂ iA;k is the kth component of the angular
momentum of theith electron relative to atomA. Likewise, l̂ ij ;k
is the kth component of the angular momentum of electroni
relative to electronj. The one-electron term of the SOMF
approximation (the first term in eq 7) is treated exactly. The
two-electron part of the SOMF Hamiltonian features a Coulomb
term (the first term in the summation in eq 7), which is effi-
ciently and accurately represented by the resolution of the
identity (RI) approximation,69 while the much smaller ex-
change terms (the last two terms in eq 7) are sufficiently well
treated within a one-center approximation. This is referred to
as the RI-SOMF(1X) operator.69 It should be noted that, in the
SOMF approach, the spin-same orbit and spin-other orbit
contributions as well as exchange effects are all treated to a
good approximation. This is not the case for the widely used
SOC operators, which are derived from the local DFT potential,
since they do not consider the important spin-other orbit
contributions74 and introduce an exchange part of the wrong
sign.69

(71) Schimmelpfennig, B.AMFI s an atomic mean field integral program;
University of Stockholm: Stockholm, Sweden, 1996.

(72) Gagliardi, L.; Schimmelpfennig, B.; Maron, L.; Wahlgren, U.; Willets, A.
Chem. Phys. Lett.2001, 344, 207.

(73) Kaupp, M.; Reviakine, R.; Malkina, O. L.; Arbuznikov, A.; Schimmelpfen-
nig, B.; Malkin, V. J. Comput. Chem. 2001, 23, 794.

(74) Malkina, O. L.; Schimmelpfennig, B.; Kaupp, M.; Hess, B. A.; Chandra,
P.; Wahlgren, U.; Malkin, V. G.Chem. Phys. Lett.1998, 296, 93.

(75) Launilla, O.; Schimmelpfennig, B.; Fagerli, H.; Gropen, O.; Taklif, A. G.;
Wahlgren, U.J. Mol. Spectrosc.1997, 186, 131.

(76) Malmquvist, P. Å.; Roos, B. O.; Schimmelpfennig, B.Chem. Phys. Lett.
2002, 357, 230.

(77) Rubio-Pons, O.; Loboda, O.; Minaev, B.; Schimmelpfennig, B.; Vahtras,
O.; Ågren, H.Mol. Phys.2003, 101, 2103.

(78) Ruud, K.; Schimmelpfennig, B.; Ågren, H.Chem. Phys. Lett.1999, 310,
215.

(79) Schimmelpfennig, B.; Maron, L.; Wahlgren, U.; Teichteil, C.; Fagerli, H.;
Gropen, O.Chem. Phys. Lett.1998, 286, 261.

(80) Schimmelpfennig, B.; Maron, L.; Wahlgren, U.; Teichteil, C.; Fagerli, H.;
Gropen, O.Chem. Phys. Lett.1998, 286, 267.

(81) Vahtras, O.; Engstro¨m, M.; Schimmelpfennig, B.Chem. Phys. Lett.2002,
351, 424.

(82) Wahlgren, U.; Sjøvoll, M.; Fagerli, H.; Gropen, O.; Schimmelpfennig, B.
Theor. Chem. Acc.1997, 97, 324.

Dkl
(SS))

ge
2

4

R2

S(2S- 1)〈0SS|∑
i
∑
j*i

rij
2 δkl - 3(r ij)k(r ij)l

rij
5

×

{2sizsjz - sixsjx - siysjy}|0SS〉 (4)

hk
SO(i) ) ∑

A

ê(riA)lk
A(i) (5)

ê(riA) ) R2

2

ZA
eff

|r i - RA|3
(6)

〈æµ|hk
SO|æν〉 ) 〈æµ|ĥk
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A “Quasi-restricted” DFT Approach to the ZFS. To apply
the general theory (eqs 1-4) within a DFT framework, a simple
approach was developed which was used with some success in
previous studies.83,84 Below, the motivation for the working
equations is provided. A key aspect of the ZFS in the
formulation of eqs 1-4 is the presence ofN-electron spin
eigenfunctions. Genuine excited-state wave functions are gener-
ally not available in DFT treatments, which are valid only for
the electronic ground state. However, it is well known that, in
the absence of nonlocal exchange potentials, the magnetic linear
response equations reduce to sum-over-orbital pairs equations
which crudely resemble sum-over-states equations. However,
even though these two approaches are radically different in their
philosophy, there is a connection between them. Pragmatic sum-
over-states-like arguments have been used for a long time in
NMR computations with DFT where effective shifts have been
incorporated in the denominators of the sum-over-orbital pair
equations in order to compensate for a lack of agreement
between DFT orbital energy differences and excitation ener-
gies.85

Consequently, the first task is to construct a spin eigenfunction
for the ground state from the spin-unrestricted DFT solution
which does not have this property. It would, of course, be
possible to start the development from an open-shell spin-
restricted DFT treatment, but this was avoided since the major
effects of spin polarization should be retained in the treatment.
In the following, it is assumed that the system under investiga-
tion is well described by a spin-polarized treatment, which
means that the spin-polarized determinant is close to the open-
shell spin-restricted solution and〈Ŝ2〉 ≈ S(S+ 1). This assump-
tion does not hold for spin-coupled systems where broken-
symmetry solutions exist. In constructing a spin eigenfunction
from a spin-polarized DFT calculation, use was made of the
fact that the spin-unrestricted natural orbitals (obtained from
the diagonalization of the density matrix) fall into three
categories: (1) Orbitals with occupation number exactly equal
to 1.0. These 2MS MOs are taken as SOMOs (ψp,ψq), and they
are all occupied by a single spin-up electron. (2) MOs with
occupation number close to 2.0. These (Nel - 2MS)/2 MOs
(ψi,ψj) are taken as doubly occupied MOs (DOMOs). (3)
Weakly occupied MOs with occupation numbers close to 0.
These orbitals (ψa,ψb) span the virtual space. The ground-state
determinant is then simply the one constructed from the DOMO
and SOMO sets. Its energy is slightly higher than that of the
spin-polarized determinant, but it is a spin eigenfunction with
total spin S ) MS and is very close to the open-shell
spin-restricted ground-state DFT solution. Therefore, this set
of orbitals is referred to as “quasi-restricted orbitals” (QROs).
To canonicalize the invariant subspaces, the following procedure
was chosen: the DOMOs diagonalize the spin-down Fock
operatorF̂ â, the virtual MOs diagonalize the spin-up Fock
operator F̂ R, and the open-shell orbitals diagonalize their
average, (F̂ R + F̂ â)/2. This choice was made since excitations
from the DOMO to the SOMO subspace involve a spin-down
electron and excitations from the SOMO to the virtual space
involve a spin-up electron. Therefore, a compromise choice was

made for the open-shell orbitals. However, while each DOMO
is associated with a unique orbital energy,εi

â and εa
R, each

open-shell orbital is assigned two orbital energies,εp
R ≡

〈ψp|F̂ R|ψp〉 and εp
â ≡ 〈ψp|F̂ â|ψp〉. Small off-diagonal Fock

matrix elements between the sub-blocks are ignored in the
present treatment.

Next, excited determinants of definite total spin are con-
structed by performing excitations between the invariant orbital
subspaces. Four types of excitations must be considered: (1)
DOMO f SOMO excitationsψi f ψp, with energy∆E(ψi f

ψp) ) εp
â - εi

â. The objective for replacing excitation energies
with orbital energy differences is that, in DFT, the orbital energy
difference is a well-defined zeroth-order approximation to the
excitation energies. This no longer holds if exact exchange is
present, and consequently, the present treatment applies only
to non-hybrid functionals. Theψi f ψp excitation leads to a
single determinant of the same spinS as the ground state. (2)
SOMOf VIRTUAL excitationsψp f ψa, with energy∆E(ψp

f ψa) ) εa
R - εp

R. These excitations lead to single determi-
nants of the same total spin as the ground state. (3) SOMOf

SOMO excitationsψp f ψq, with energy∆E(ψp f ψq) ) εq
â

- εp
R. These excitations lead to single determinants with total

spin S′ ) S- 1. (4) DOMO f VIRTUAL excitations ψi f

ψa. While there are several possible spin couplings of various
total spinsS′, the only ones that are kept are the most important
excitations, in which the spin of the excited electron is flipped
such that the excited determinant is a spin eigenfunction with
spinS′ ) S+ 1, and consequently the excitation energy∆E(ψi

f ψa) ) εa
R - εi

â. By this construction, the major part of the
spin polarization is still contained in the orbital energies, while
the treatment is based on spin eigenfunctions, as desired. After
inserting the four classes of excitations in eqs 1-3, one obtains
the SOC contribution to the ZFS as

It is interesting to compare this equation to the model
presented by Pederson and Khanna, which was derived from a
completely different line of reasoning.60 In the present notation,
their treatment, which holds for the case of a spin-unrestricted
ground-state determinant and in the absence of exact exchange,
reads

(83) Ray, K.; Begum, A.; Weyhermu¨ller, T.; Piligkos, S.; van Slageren, J.; Neese,
F.; Wieghardt, K.J. Am. Chem. Soc. 2005, 127, 4403.

(84) Scho¨neboom, J.; Neese, F.; Thiel, W.J. Am. Chem. Soc.2005, 127, 5840.
(85) Malkin, V. G.; Malkina, O. L.; Casida, M. E.; Salahub, D. R.J. Am. Chem.

Soc.1994, 116, 5898.
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SOC|ψi〉

εp
â - εi

â

-
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SOC|ψp〉

εa
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1
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1
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∑
p*q

〈ψp|hk
SOC|ψq〉 〈ψq|hl

SOC|ψp〉

εq
â - εp
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+
1
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1
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〈ψi|hk
SOC|ψa〉 〈ψa|hl
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(10)
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Comparison of eqs 10 and 11 shows that the basic ingredients
of the two methods are essentially identical. Apart from using
quasi-restricted versus spin-unrestricted MOs, the main differ-
ence concerns the prefactors in front of the spin-flip contribu-
tions. As will be shown below, the two formulations provide
essentially identical results if the same SOC operator is used.
(It was verified in the course of this work thatg-tensor
calculations with the quasi-restricted method provide results very
similar to those of the spin-unrestricted linear response treatment,
provided that the spin contamination of the spin-unrestricted
determinant is small.)

Spin-Spin Contributions to the ZFS. For the spin-spin
part of the ZFS, McWeeny and Mizuno have shown that, in
the case that|0SS〉 is approximated by a single determinant,
the second-order spin density matrix is readily factorized into
one-electron contributions28 and eq 4 can be rewritten as

Here,PR-â ) PR - Pâ is the spin density matrix in the atomic
orbital basis, withPµν

σ ) ∑kσ cµk
σ cνk

σ and cσ being the MO
coefficient matrix of spinσ. This equation was implemented
without further approximations. The two-electron spin-spin
integrals appearing in eq 12 look complicated on first glance
but are readily evaluated over Gaussian functions using the same
techniques as those established for the electron-electron
repulsion integrals.86 The same approximation has been previ-
ously suggested by Petrenko et al. and shown to work well for
CH2.62 In terms of rigorous DFT theory, the treatment of two-
electron observables is problematic since, in principle, only the
diagonal elements of the first-order density matrix are known.
If one evaluates the spin-spin contribution by eq 12, it is tacitly
assumed that the second-order density matrix of the non-
interacting reference state and the exact second-order density
coincide, which is certainly not the case. It is unknown what
kind of error is introduced by this approximation. Its main
justification may remain for some time to come that, at least to
the best of the author’s knowledge, it is without practical
alternative at the present level of sophistication of DFT.

Direct ab Initio Calculation of the ZFS. In several instances,
it is advisable to step outside the domain of perturbation theory.

In particular, in the cases of near orbital degeneracy or very
large SOC, the perturbation treatment breaks down and an
infinite order treatment is imperative. In the present work, this
was done in the ab initio domain in the framework of quasi-
degenerate perturbation theory. The calculations consist basically
of the following steps: (1) Calculation of state-averaged
CASSCF wave functions for a given set of target states. In the
case of transition metal complexes, these are the various
multiplets which arise from the given dN configuration of the
metal. Either these wave functions are used directly as|aSS〉,
or an approximate dynamic correlation treatment on top of the
SA-CASSCF calculation will be performed. In the present
calculations, the dynamic correlation methods were taken as
DDCI265 and SORCI,66 which also heavily leans on the concepts
of DDCI. In any case, the first step produces a set of many-
electron multiconfigurational and multideterminantal orthogonal
and non-interacting (through the Hamiltonian) spin eigenfunc-
tions |aSS〉. (2) In the next step, the set of states|aSS〉 is
enhanced to include allMS components for each state, to give
the larger set|aSM〉. (3) Inside the|aSM〉 set, the Born-
Oppenheimer plus SOC operators are simultaneously diagonal-
ized to yieldN-electron “relativistic” states and their energies
(quasi-degenerate perturbation theory). The matrix to be diago-
nalized is

The Wigner-Eckart theorem can be used to write the SOC
matrix elements in the following form, in which theM,M′
dependence is factored out:6

Here, (M′
S′

m
1 |MS ) is a Clebsch-Gordon coefficient, and the

reduced matrix elementsYIJ
SS′(-m) were explained previous-

ly.5,6 Their calculation involves considerable effort, since each
state|aSS〉 is a linear combination of a potentially large set of
N-electron configuration state functions (CSFs). An efficient
methodology was implemented in the ORCA program, and the
technical details of the implementation are described else-
where.54 Nevertheless, from the lowest 2S+ 1 eigenvalues of
the matrix in eq 13, the SOC contribution to the ZFS is readily
extracted (vide infra).

The rigorous spin-spin contribution to the ZFS has not yet
been implemented into the ORCA program. However, an
interesting possibility is to use eq 12 also in the context of
correlated ab initio methods. In this case, the SCF spin density
matrix is simply replaced by the correlated spin density matrix.
This is then termed the “mean-field” approximation to the spin-
spin coupling. As will be developed in detail elsewhere, it may
be regarded as the first term in a cumulant expansion of the
second-order density. In preliminary calculations, it was found
that this approximation is quite accurate (similarly to the mean-
field approximation to the SOC). The full implementation of
the CASSCF-level spin-spin coupling has been previously

(86) Helgaker, T.; Taylor, P. R. InModern Electronic Structure Theory; Yarkony,
D. R., Ed.; World Scientific: Singapore, 1995; p 725.
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reported by Vahtras and co-workers50 and is also in progress in
this laboratory.

3.2 Results for [Mn(acac)3]. In this section, the various
methods discussed above are tested on a popular and well-
studied complex, namely [Mn(acac)3], a high-spin d4 system
with tetragonal distortion. Its ZFS has been measured to high
precision by Barra et al. and by Krzystek et al.,87,88who arrived
at values ofD ) -4.52 cm-1 andE/D ) 0.05 cm-1. Krzystek
et al. also provided a concise ligand-field explanation of the
origin of the ZFS: due to the Jahn-Teller active d4 ion, the
complex distorts in the direction of tetragonal elongation, which
leaves the dz2-based MO empty, and according to the standard
ligand-field analysis, this leads to a negativeD value.87,88 (For
further ligand-field arguments, see ref 5.) The main intention
of the present work is to compare the different computational
methods discussed above for this well-understood case. The
DFT-optimized structure of the complex used in all calculations
clearly shows the tetragonal distortion. It was kindly provided
by Prof. Kortus and is shown in Figure 1. Coordinates are
available in the Supporting Information.

Comparison of DFT Methods.The comparison of the results
of the two different approximations to the SOC part of the ZFS
in second-order perturbation theory-based DFT calculations is
shown in Table 1. It is evident that the two approximations
produce similar predictions for the ZFS. The small differences
come partly from the prefactor in front of the individual terms
in eqs 10 and 11, and partly from the different approximations
made in setting up the working equations. However, the
experience gained so far indicates that both methods tend to
give similar predictions.

The DFT calculations predict the correct sign and an overall
reasonable rhombicity. However, the absolute value ofD is

considerably underestimated. As expected, the SOC part contains
two significant contributions: The first contribution comes from
theR f R excitations. These correspond primarily to the spin-
allowed (quintetf quintet) ligand-field excitations and have
usually been solely held responsible for the ZFS. However,
compared to the final value, they contribute only∼ -0.4 cm-1

(∼16%), which renders arguments based on spin-allowed ligand-
field excitations alone in high-spin d4 systems unreliable. As
anticipated, a second and even larger SOC contribution arises
from theR f â (quintetf triplet) excitations. These excitations
contribute∼40-50% of the finalD value. Perhaps the most
surprising number in Table 1 is the large contribution of the
direct spin-spin coupling term. It contributes as much as-1
cm-1 to the finalD value and, therefore, significantly improves
the agreement with the experimental values. The final predicted
D is then still underestimated, but since all terms have been
treated with a minimum number of approximations (SOC and
spin-spin integrals), it is believed that this number properly
reflects the intrinsic accuracy of the DFT-based procedures for
the prediction of ZFSs. It is possible that hybrid DFT procedures,
once properly implemented, give slightly better predictions.
However, it is considered to be unlikely that they resolve the
remaining disagreement with experiment.

To provide a fair comparison to other DFT implementa-
tions, in particular to the program of Pederson, Khanna, and
Kortus (PKK), where the DFT ZFS methodology was first
derived and implemented, the results of calculations with the
PKK method for the treatment of the SOC term and the effec-
tive potential DFT method for the treatment of the SOC
operator were compared. As is evident from Table 1, the results
of these latter computations agree somewhat better with the
experimental values than the ones with the SOMF operator.
However, this apparent improvement is treacherous, since the
V eff treatment of the SOC operator intrinsically overestimates
SOC matrix elements.69 Thus, the apparently better ZFS values
result from a certain degree of error cancellation in the DFT
calculations.

Comparison of ab Initio Results.All ab initio calculations
reported in this work are based on the smallest reasonable
complete active space self-consistent field (CASSCF) treatment
in which four active electrons occupy the five metal d-based
orbitals. In the calculations, the 5 possible quintet states as well
as 35 triplet states were calculated and included in the “infinite-
order” SOC calculation. Up to 100 singlet states were also
included but provided negligible contributions to theD andE
values (<0.01 cm-1). Thus, the set of quintet and triplet states
provides a converged set of ligand-field excited states which
are presumed to dominate the SOC contribution to the ZFS in
transition metal complexes. Since the diagonalization of the SOC
matrix introduces some higher order spin-Hamiltonian terms
into the final energies, it is not possible to present the results in
terms of a D-tensor in the same way as in perturbation
theoretical treatments. Instead, one can use the closed form
solutions of the spin-Hamiltonian problem forS ) 2 provided
by Hendrich and Debrunner.89 The eigenfunctions and eigen-
values are(87) Krzystek, J.; Yeagle, G. J.; Park, J.-H.; Britt, R. D.; Meisel, M. W.; Brunel,

L.-C.; Telser, J.Inorg. Chem.2003, 42, 4610.
(88) Barra, A. L.; Gatteschi, D.; Sessoli, R.; Abbati, G. L.; Cornia, A.; Fabretti,

A. C.; Uytterhoeven, M. G.Angew. Chem., Int. Ed.1997, 36, 2329. (89) Hendrich, M. P.; Debrunner, P. G.Biophys. J.1989, 56, 489.

Table 1. Comparison of Contributions to the Calculated Zero-Field
Splitting between the Quasi-restricted DFT Method and the
Perderson-Khanna-Kortus Approach, as Well as Comparison of
the Results Obtained with the SOMF and Veff SOC Operatorsa

method D E

BP86-QR-SOMFb R f R -0.42 -0.03
â f â -0.03 -0.00
R f â -1.07 -0.10
â f R +0.00 +0.00
spin-spin -0.99 -0.17
total -2.51 -0.316

BP86-PKK-SOMFc R f R -0.32 -0.04
â f â +0.02 -0.01
R f â -1.29 -0.14
â f R -0.01 +0.01
spin-spin -0.99 -0.18
total -2.59 -0.36

BP86-PKK-V eff c R f R -0.45 -0.05
â f â +0.01 -0.01
R f â -1.69 -0.19
â f R +0.01 +0.01
spin-spin -0.99 -0.18
total -3.12 -0.42

expt -4.52 -0.25

a BP86/TZVP, all numbers are in cm-1. b With quasi-restricted method
(eq 10).c With Pederson-Khanna-Kortus method (eq 11).
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where

Thus, given the eigenvalues from the diagonalization of the
SOC-CI matrix,D andE can determined as

with ∆ ) |E0 - E2s| andδ ) |E1s - E1a|. The drawback of this
procedure is that higher order terms are included in some
average way into the values ofD andE, which is generally not
satisfactory. However, in the case of [Mn(acac)3], the higher
order spin Hamiltonian terms account for splittings on the order
of ∼0.1 cm,87,88which is negligible with respect to the remaining
errors of the calculations.

Judging from Table 2, the SOC contributions to the ZFS
predicted by the ab initio methods are considerably larger than
those predicted by the DFT methods and bring the computed
D value closer to the experimental value. The effects of dynamic
correlation brought in by the SORCI and DDCI2 calculations
are significant and further increase the ZFS over its CASSCF
value. If additivity of triplet and quintet contributions is assumed
(this should be a good approximation since perturbation theory
is valid for [Mn(acac)3] due to the lack of near-degeneracy
effects), then the CASSCF results indicate that∼38% of theD
value (-1.38 cm-1) comes from the quintets and 62% (-2.28
cm-1) from the triplets, again confirming that these contributions
dominate over the quintet contributions. Comparing to the DFT
numbers, it becomes evident that both contributions are
underestimated by a factor of 2-3 in the DFT treatments. Thus,
neither type of excitation is solely responsible for the under-
estimation of the ZFS by DFT methods.

However, there is a caveat in the ab initio numbers insofar
as they do not contain any spin-spin contribution. To do this
rigorously is presently not possible, since the spin-spin tensor
alone has a different orientation than the completeD-tensor,
and consequently, one cannot simply add the calculated spin-
spin value (-1.65 cm-1 at the CASSCF(4,5) level in the mean-
field approximation) to theD value deduced from the spin-
orbit CI calculation. The most consistent procedure would be
to introduce the spin-spin coupling at the same time as the
spin-orbit coupling into the CI procedure. Alternatively, one
could try to deduce a completeD-tensor from the spin-orbit

CI procedure and combine it with the mean-field spin-spin
tensor. Both alternatives are presently being tested. Taking the
∼-1 cm-1 spin-spin contribution from the DFT calculation
as a rough guide, it is likely that, after including the direct spin-
spin terms, the finalD values from the ab initio procedures will
turn out to slightly overestimate the magnitude of theD value
in [Mn(acac)3] but probably not nearly as much as the DFT
methods underestimate them. In this case, the CASSCF value
would turn out to be the best. This is largely parallel to what
was observed in calculations on atoms and diatomic molecules.54

Semiempirical Calculations.While the ab initio results are
still quite manageable for the size of molecule treated in this
work, it may be desirable to use a related approach based on
an explicit treatment of the transition metal multiplets but with
a lower computational cost. The ORCA program was therefore
enhanced by the capability to perform CASSCF and spin-orbit
CI calculations based on semiempirical methods. The favorite
choice of semiempirical method for transition metal spectro-
scopy is Zerner’s INDO/S method, since it has proven to give
fairly good results for the optical90-95 and magnetic6,96 spectra
of open-shell transition metal ions. In the present work, the
standard parametrization in the ORCA program has been
adopted without any change. Based on a CASSCF(4,5) treatment
and using the same 5 quintet and 35 triplet roots, the INDO/S
method predicts a SOC contribution to theD value of-4.68
cm-1 andE/D ) 0.13. Thus, compared to the ab initio results,
the INDO/S method slightly overestimates theD value and gives
a somewhat exaggerated rhombicity. The results are nevertheless
in fairly pleasing agreement, given that these calculations are
about 3-4 orders of magnitude faster than the corresponding
ab initio or DFT calculations while being not inferior to the
latter.

Excitation Energies.Krzystek et al.87 have remeasured and
assigned the absorption spectrum of [Mn(acac)3] in their ligand-
field analysis of theD value. Using ligand-field calculations,
they assigned the three bands observed at 9520, 17 900, and
21 500 cm-1 to the 5A1g, 5B2g, and 5Eg spin-allowed ligand-
field transitions arising from the expected5B1g ground state of
a tetragonally elongated distorted octahedral ligand field. The
symmetry was idealized to axial, despite the fact thatE/D ≈
0.05, which therefore introduces a slight approximation. After
adjustment of several ligand-field parameters, theD value was

(90) Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff, U. T.J.
Am. Chem. Soc.1980, 102, 589.

(91) Anderson, W. P.; Edwards, W. D.; Zerner, M. C.Inorg. Chem.1986, 25,
272.

(92) Zerner, M. C. InMetal-Ligand Interactions: from Atoms, to Clusters, to
Surfaces; Salahub, D. R., Russo, N., Eds.; Kluwer Academic Publishers:
Amsterdam, 1992; p 101.

(93) Zerner, M. C. InMetal Ligand Interactions; Russo, N., Salahub, D. R.,
Eds.; Kluwer Academic: Amsterdam, 1996; p 493.

(94) Zerner, M. C. InReViews in Computational Chemistry, Vol. 2; Lipkowitz,
K. B., Boyd, D. B., Eds.; VCH: Heidelberg, 1990; p 315.

(95) Manne, R.; Zerner, M. C.Int. J. Quantum Chem. Symp.1986, 19, 165.
(96) Neese, F.Int. J. Quantum Chem.2001, 83, 104.

|2s〉 ) a+(|+2〉 + |-2〉)/21/2+ a-|0〉 E2s ) 2xD2 + 3E2

(15)

|2a〉 ) (|+2〉 - |-2〉)/21/2 E2a ) 2D (16)

|1s〉 ) (|+1〉 + |-1〉)/21/2 E1s ) -D + 3E
(17)

|1a〉 ) (|+1〉 - |-1〉)/21/2 E1a ) -D - 3E
(18)

|0′〉 ) a-(|+2〉 + |-2〉)/21/2 - a+|0〉 E0′ ) -2xD2 + 3E2

(19)

a( ) 1
4
x1 ( D/xD2 + 3E2

D ) ( 1
4x∆2 - 4

3
δ2 (20)

E ) δ
6

(21)

Table 2. Results of ab Initio Calculations of the ZFS Parameters
for [Mn(acac)3]a

method D E

CASSCF(4,5) SOC (S) 1 + S) 2) -3.67 -0.36
SORCI(4,5) SOC (S) 1 + S) 2) -4.13 -0.44
DDCI2(4,5) SOC (S) 1 + S) 2) -4.21 -0.44

a The TZVP basis set and the SOMF operator were used in all
calculations.
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very well reproduced. However, the spin-spin coupling was
not included in the analysis, and according to the present results,
the good agreement of the ligand-field calculations may
therefore be somewhat fortuitous.

Below the parent,Oh symmetry labels were kept since the
structure used was ofC1 symmetry, and therefore an assignment
to D4h terms would have been ambiguous. The ligand-field
transition energies are important since they enter the denomina-
tors of the perturbation treatment and are, of course, equally
important in determining the amount of state mixing upon
diagonalization of the SOC-CI matrix. In addition to the quintet
f quintet excitations, the first low-symmetry split3T1g (eg f
t2g de-excitation) ligand-field excited state is listed since it makes
a major contribution to theD value and serves as a guide for
the position of the spin-flip excitations relative to the quintets.

It is evident from Table 3 that the ab initio methods provide
a fairly consistent set of excitation energies which agree well
with the experimental findings. The deviations from experiment
are only 1000-2000 cm-1. Note that the position of the first
ligand-field excited state, while being low in energy (as expected
for an “intra-Eg” transition), is not important for theD value
since it has an almost vanishing SOC interaction with the5B1g

ground state. All other states listed contribute strongly to theD
value. However, they still do not dominate theD value, as many
of the other triplet excited ligand-field states also have large
SOC matrix elements with the ground state. The INDO/S
calculations lead to good agreement with the ab initio results
for the quintets but significantly underestimate the transition
energies (∼6000 cm-1) to the triplets. This is likely the cause
of the exaggerated SOC contribution toD in this method. The
behavior of the DFT results is somewhat surprising in that the
denominators of the QRO calculation agree well with the ab
initio results for the triplets but less so for the quintets. In any
case, the denominators are certainly of acceptable quality, given
the approximations that were made, and support the underlying
idea of the QRO-based ZFS method. Since the DFT calculations
also give somewhat larger T-state splittings upon symmetry
lowering, which, if anything, shouldincreasethe calculated ZFS,
a substantial part of the deviation between the ab initio and the
DFT results must also arise from the SOC matrix elements in
the numerator.

4. Conclusions

To the best of the author’s knowledge, the present work
provides the first complete implementation of the spin-spin
and spin-orbit parts of the ZFS in a DFT framework. While
the DFT results are qualitatively reasonable, much work remains
to be done before DFT becomes an accurate tool in the

prediction of ZFSs in transition metal complexes. Consequently,
several efficient ab initio methods for the calculations of the
ZFSs were implemented and were shown to be substantially
more accurate than DFT for the prediction of ZFSs. Already at
the state-averaged CASSCF (SA-CASSCF) level with only the
metal d-orbitals in the active space, a level of theory which is
readily extended to larger molecules, the results are surprisingly
good. However, upon recovering at least differential dynamic
correlation as in the SORCI and DDCI2 procedures, significant
changes in the computed ZFSs were observed. In our opinion,
the successful prediction of the ZFS requires a careful treatment
of the low-lying multiplets of the transition metal ions, and in
this respect, it is believed that multideterminantal, multicon-
figurational ab initio methods have presently more to offer than
DFT procedures since they readily give access to an explicit
representation of all members of all multiplets. This is particu-
larly true for the spin-flip excitations which lead to lower total
spin than that of the ground state and frequently provide the
dominant contributions to the ZFS. Indeed, it was shown here
that even the simple semiempirical INDO/S method is capable
of giving reasonable predictions of the SOC contributions to
the ZFS if it is combined with CASSCF and SOC-CI techniques.
Since such calculations are computationally very cheap, it is
anticipated that similar calculations have a considerable potential
for studies on large moleculess at least for obtaining an initial
evaluation of the behavior of the system.

A third finding of the present work is the important role of
the direct spin-spin coupling contributions to the ZFS. While
the mean-field method used in this paper is certainly associated
with some uncertainties, it appears evident that the direct spin-
spin contributions are much larger than previously assumed and
need to be taken into account if a realistic modeling of the ZFS
in transition metal complexes is to be achieved. This is
particularly true if the second-order SOC contributions are not
exceedingly large, as is often the case. The SOC contributions
become certainly dominant if there are very low-lying multiplets.
This situation has recently been met in studies on high-valent
(FeO)2+ sites84,97as well as transition metal dithiolenes of iron
and cobalt.83 However, there are many situations in which this
is not the case. For example, the ZFSs of Fe(III), Mn(II), and
Cr(III) complexes are typically|D| e 1-2 cm-1, and in this
case the spin-spin terms should not be neglected. In retrospect,
the important role of direct spin-spin coupling probably should
have been anticipated, since spin-spin coupling contributions
have been calculated previously to be up to∼1 cm-1 for small
molecules and organic molecules.36,37,39,40,45,49-51,53,77,81,98-101 In
our opinion, there is no a priori electronic structure reason why
these contributions should be an order of magnitude smaller in
transition metal complexes. The unpaired electrons reside in
relatively compact d-orbitals, which means that the average
electron-electron distance is rather short. Apart from that, the
spin-spin part is, like the SOC contribution to the ZFS, zero
for cubic and higher symmetries. Thus, geometric distortions
should be expected to induce significant spin-spin contributions
in a similar way as they induce significant SOC contributions
to the ZFS. It is considered unlikely that the error in the
computed numbers is as large as an order of magnitude. Thus,
even if the calculated direct spin-spin couplings in this work

(97) Neese, F.J. Inorg. Biochem.2006, 100, 716-726.

Table 3. Transition Energies (in cm-1) for Some Ligand-Field
Excited States Calculated by the Various Quantum Chemical
Methods Used in This Study

SA-
CASSCF SORCI DDCI2

QRO-
BP86 INDO/S expa

5Eg f 5Eg 6690 7040 6950 7903 7670 9520
5Eg f 5T2g 16310 18310 18120 23540 20730 17900

17650 19770 19510 23560 22010 21500
18060 20570 20210 26330 22710 21500

5Eg f 3T1g 13690 11190 11810 11960 5570
13930 11340 12080 13511 5930
14800 12250 13130 14100 6830

a Experimental values are quoted from ref 87.
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would turn out to be too high by a factor of 2-3, the conclusion
about their importance would still remain.

It should be noted that, concerning the SOC part, calculations
similar to the ones reported in this paper have been performed
previously. In particular, highly sophisticated studies on small
molecules were reported by the Bonn group,36-38,102,103 by
Gordon, Fedorov, and co-workers104-108 and by Vathras, Mi-
naev, and co-workers.45,50,55-57,77 Some applications to larger
molecules have been reported47,48,58 by means of the RASSI
program in the MOLCAS package, which also allows SOC
calculations.76 However, in this case, the many electron states
are, in general, individual CASSCF wave functions rather than
fully correlated states. The diagonal energies can be replaced
by more accurate CASPT2 values, which, together with the
treatment of the SOC on the basis of individual CASSCF states,
appears to provide good results. From a methodological point
of view, we believe that the DDCI2 and SORCI approaches
have the advantages that (a) the SOC matrix elements are treated
using the entire (partially) correlated wave function rather than
only the CASSCF reference wave function, (b) the reference
coefficients are “relaxed” in the field of dominant perturbing
configurations rather than being held fixed at their CASSCF
values, and (c) the “infinite-order” treatment of the perturbing
CSFs avoids any intruder state problem which may occasionally
complicate the application of the CASPT2 method. The obvious

drawback is that neither the DDCI2 nor the SORCI approach
is rigorously size-consistent. This may potentially deteriorate
the results for larger molecules. However, both methods are
only moderately size-inconsistent. While we do regard this
disadvantage as significant and hope to solve it in revised
versions of these methods, the results assembled over the past
three years do not indicate grave size-inconsistency problems
in DDCI2 or SORCI, which is in line with the conjectures of
Malrieu and co-workers.65,109-111 Furthermore, the calculated
excitation energies in this work compare well with the experi-
mentally deduced transition energies.

The present work was performed on an isolated example, and
a larger test set needs to be studied in order to arrive at a fair
assessment of the relative merits of the different approaches.
The results of this study, however, have been encouraging and
demonstrate the important roles of spin-flip excitations and direct
spin-spin coupling for the ZFSs of transition metal complexes.
Further work along these lines is in progress.
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